timeseries
startorch.timeseries ¶
Contain time series generators.
startorch.timeseries.BaseTimeSeriesGenerator ¶
Bases: ABC
Define the base class to implement a time series generator.
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import SequenceTimeSeriesGenerator
>>> generator = SequenceTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()})
>>> generator
SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.BaseTimeSeriesGenerator.generate
abstractmethod
¶
generate(
seq_len: int,
batch_size: int = 1,
rng: Generator | None = None,
) -> dict[Hashable, Tensor]
Generate a time series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seq_len |
int
|
The sequence length. |
required |
batch_size |
int
|
The batch size. |
1
|
rng |
Generator | None
|
An optional random number generator. |
None
|
Returns:
Type | Description |
---|---|
dict[Hashable, Tensor]
|
A batch of time series. |
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import SequenceTimeSeriesGenerator
>>> generator = SequenceTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()})
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.Concatenate ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that concatenates the outputs of multiple time series generators.
Note that the last value is used if there are duplicated keys.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[BaseTimeSeriesGenerator | dict]
|
The time series generators or their configurations. |
required |
TimeSeries usage:
>>> from startorch.timeseries import SequenceTimeSeriesGenerator, Concatenate
>>> from startorch.sequence import RandInt, RandUniform
>>> generator = Concatenate(
... [
... SequenceTimeSeriesGenerator(
... generators={"value": RandUniform(), "time": RandUniform()},
... ),
... SequenceTimeSeriesGenerator(generators={"label": RandInt(0, 10)}),
... ]
... )
>>> generator
ConcatenateTimeSeriesGenerator(
(0): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1): SequenceTimeSeriesGenerator(
(label): RandIntSequenceGenerator(low=0, high=10, feature_size=())
)
)
>>> generator.generate(seq_len=10, batch_size=5)
{'value': tensor([[...]]), 'time': tensor([[...]]), 'label': tensor([[...]])}
startorch.timeseries.ConcatenateTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that concatenates the outputs of multiple time series generators.
Note that the last value is used if there are duplicated keys.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[BaseTimeSeriesGenerator | dict]
|
The time series generators or their configurations. |
required |
TimeSeries usage:
>>> from startorch.timeseries import SequenceTimeSeriesGenerator, Concatenate
>>> from startorch.sequence import RandInt, RandUniform
>>> generator = Concatenate(
... [
... SequenceTimeSeriesGenerator(
... generators={"value": RandUniform(), "time": RandUniform()},
... ),
... SequenceTimeSeriesGenerator(generators={"label": RandInt(0, 10)}),
... ]
... )
>>> generator
ConcatenateTimeSeriesGenerator(
(0): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1): SequenceTimeSeriesGenerator(
(label): RandIntSequenceGenerator(low=0, high=10, feature_size=())
)
)
>>> generator.generate(seq_len=10, batch_size=5)
{'value': tensor([[...]]), 'time': tensor([[...]]), 'label': tensor([[...]])}
startorch.timeseries.Merge ¶
Bases: BaseTimeSeriesGenerator
Implement a time series creator that creates time series by combining several time series.
The time series are combined by using the time information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[BaseTimeSeriesGenerator | dict]
|
The time series generators or their configuration. |
required |
time_key |
str
|
The key used to merge the time series by time. |
TIME
|
Example usage:
>>> from startorch.timeseries import Merge, SequenceTimeSeriesGenerator
>>> from startorch.sequence import RandUniform, RandNormal
>>> generator = Merge(
... (
... SequenceTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()}),
... SequenceTimeSeriesGenerator({"value": RandNormal(), "time": RandNormal()}),
... )
... )
>>> generator
MergeTimeSeriesGenerator(
(time_key): time
(0): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1): SequenceTimeSeriesGenerator(
(value): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
(time): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
)
)
>>> batch = generator.generate(seq_len=12, batch_size=10)
>>> batch
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.MergeTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series creator that creates time series by combining several time series.
The time series are combined by using the time information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[BaseTimeSeriesGenerator | dict]
|
The time series generators or their configuration. |
required |
time_key |
str
|
The key used to merge the time series by time. |
TIME
|
Example usage:
>>> from startorch.timeseries import Merge, SequenceTimeSeriesGenerator
>>> from startorch.sequence import RandUniform, RandNormal
>>> generator = Merge(
... (
... SequenceTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()}),
... SequenceTimeSeriesGenerator({"value": RandNormal(), "time": RandNormal()}),
... )
... )
>>> generator
MergeTimeSeriesGenerator(
(time_key): time
(0): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1): SequenceTimeSeriesGenerator(
(value): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
(time): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
)
)
>>> batch = generator.generate(seq_len=12, batch_size=10)
>>> batch
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.MixedTimeSeries ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series by mixing two sequences of a time series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator |
BaseTimeSeriesGenerator | dict
|
The time series generator or its configuration. |
required |
key1 |
str
|
The key of the first sequence to mix. |
required |
key2 |
str
|
The key of the second sequence to mix. |
required |
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import MixedTimeSeries, SequenceTimeSeries
>>> generator = MixedTimeSeries(
... SequenceTimeSeries({"key1": RandUniform(), "key2": RandUniform()}),
... key1="key1",
... key2="key2",
... )
>>> generator
MixedTimeSeriesGenerator(
(generator): SequenceTimeSeriesGenerator(
(key1): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(key2): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(key1): key1
(key2): key2
)
>>> generator.generate(seq_len=12, batch_size=10)
{'key1': tensor([[...]]), 'key2': tensor([[...]])}
startorch.timeseries.MixedTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series by mixing two sequences of a time series.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator |
BaseTimeSeriesGenerator | dict
|
The time series generator or its configuration. |
required |
key1 |
str
|
The key of the first sequence to mix. |
required |
key2 |
str
|
The key of the second sequence to mix. |
required |
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import MixedTimeSeries, SequenceTimeSeries
>>> generator = MixedTimeSeries(
... SequenceTimeSeries({"key1": RandUniform(), "key2": RandUniform()}),
... key1="key1",
... key2="key2",
... )
>>> generator
MixedTimeSeriesGenerator(
(generator): SequenceTimeSeriesGenerator(
(key1): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(key2): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(key1): key1
(key2): key2
)
>>> generator.generate(seq_len=12, batch_size=10)
{'key1': tensor([[...]]), 'key2': tensor([[...]])}
startorch.timeseries.MultinomialChoice ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that selecta a different time series generator at each batch.
This time series generator is used to generate time series with
different generation processes. The user can specify a list of
time series generators with an associated weight. The weight is
used to sample the time series generator with a multinomial
distribution. Higher weight means that the time series generator
has a higher probability to be selected at each batch.
Each dictionary in the generators
input should have the
following items:
- a key ``'generator'`` which indicates the time series
generator or its configuration.
- an optional key ``'weight'`` with a float value which
indicates the weight of the time series generator.
If this key is absent, the weight is set to ``1.0``.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[dict[str, BaseTimeSeriesGenerator | dict]]
|
The time series generators and their weights. See above to learn about the expected format. |
required |
Example usage:
>>> from startorch.timeseries import MultinomialChoice, SequenceTimeSeries
>>> from startorch.sequence import RandUniform, RandNormal
>>> generator = MultinomialChoice(
... (
... {
... "weight": 2.0,
... "generator": SequenceTimeSeries(
... {"value": RandUniform(), "time": RandUniform()}
... ),
... },
... {
... "weight": 1.0,
... "generator": SequenceTimeSeries(
... {"value": RandNormal(), "time": RandNormal()}
... ),
... },
... )
... )
>>> generator
MultinomialChoiceTimeSeriesGenerator(
(0) [weight=2.0] SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1) [weight=1.0] SequenceTimeSeriesGenerator(
(value): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
(time): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
)
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.MultinomialChoiceTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that selecta a different time series generator at each batch.
This time series generator is used to generate time series with
different generation processes. The user can specify a list of
time series generators with an associated weight. The weight is
used to sample the time series generator with a multinomial
distribution. Higher weight means that the time series generator
has a higher probability to be selected at each batch.
Each dictionary in the generators
input should have the
following items:
- a key ``'generator'`` which indicates the time series
generator or its configuration.
- an optional key ``'weight'`` with a float value which
indicates the weight of the time series generator.
If this key is absent, the weight is set to ``1.0``.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Sequence[dict[str, BaseTimeSeriesGenerator | dict]]
|
The time series generators and their weights. See above to learn about the expected format. |
required |
Example usage:
>>> from startorch.timeseries import MultinomialChoice, SequenceTimeSeries
>>> from startorch.sequence import RandUniform, RandNormal
>>> generator = MultinomialChoice(
... (
... {
... "weight": 2.0,
... "generator": SequenceTimeSeries(
... {"value": RandUniform(), "time": RandUniform()}
... ),
... },
... {
... "weight": 1.0,
... "generator": SequenceTimeSeries(
... {"value": RandNormal(), "time": RandNormal()}
... ),
... },
... )
... )
>>> generator
MultinomialChoiceTimeSeriesGenerator(
(0) [weight=2.0] SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(1) [weight=1.0] SequenceTimeSeriesGenerator(
(value): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
(time): RandNormalSequenceGenerator(mean=0.0, std=1.0, feature_size=(1,))
)
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.Periodic ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator to generate periodic time series from a regular time series generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timeseries |
BaseTimeSeriesGenerator | BasePeriodicTimeSeriesGenerator | dict
|
A time series generator or its configuration that is used to generate the periodic pattern. |
required |
period |
BaseTensorGenerator | dict
|
The period length sampler or its configuration. This sampler is used to sample the period length at each batch. |
required |
Example usage:
>>> from startorch.timeseries import Periodic, SequenceTimeSeries
>>> from startorch.sequence import RandUniform
>>> from startorch.tensor import RandInt
>>> generator = Periodic(
... SequenceTimeSeries({"value": RandUniform(), "time": RandUniform()}),
... period=RandInt(2, 5),
... )
>>> generator
PeriodicTimeSeriesGenerator(
(sequence): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(period): RandIntTensorGenerator(low=2, high=5)
)
>>> generator.generate(seq_len=10, batch_size=2)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.PeriodicTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator to generate periodic time series from a regular time series generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timeseries |
BaseTimeSeriesGenerator | BasePeriodicTimeSeriesGenerator | dict
|
A time series generator or its configuration that is used to generate the periodic pattern. |
required |
period |
BaseTensorGenerator | dict
|
The period length sampler or its configuration. This sampler is used to sample the period length at each batch. |
required |
Example usage:
>>> from startorch.timeseries import Periodic, SequenceTimeSeries
>>> from startorch.sequence import RandUniform
>>> from startorch.tensor import RandInt
>>> generator = Periodic(
... SequenceTimeSeries({"value": RandUniform(), "time": RandUniform()}),
... period=RandInt(2, 5),
... )
>>> generator
PeriodicTimeSeriesGenerator(
(sequence): SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(period): RandIntTensorGenerator(low=2, high=5)
)
>>> generator.generate(seq_len=10, batch_size=2)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.SequenceTimeSeries ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series with sequence generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Mapping[str, BaseSequenceGenerator | dict]
|
The sequence generators or their configurations. |
required |
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import SequenceTimeSeries
>>> generator = SequenceTimeSeries({"value": RandUniform(), "time": RandUniform()})
>>> generator
SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.SequenceTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series with sequence generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Mapping[str, BaseSequenceGenerator | dict]
|
The sequence generators or their configurations. |
required |
Example usage:
>>> import torch
>>> from startorch.sequence import RandUniform
>>> from startorch.timeseries import SequenceTimeSeries
>>> generator = SequenceTimeSeries({"value": RandUniform(), "time": RandUniform()})
>>> generator
SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.TensorTimeSeries ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series from tensor generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Mapping[str, BaseTensorGenerator | dict]
|
The tensor generators or their configurations. |
required |
Example usage:
>>> import torch
>>> from startorch.tensor import RandUniform
>>> from startorch.timeseries import TensorTimeSeriesGenerator
>>> generator = TensorTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()})
>>> generator
TensorTimeSeriesGenerator(
(value): RandUniformTensorGenerator(low=0.0, high=1.0)
(time): RandUniformTensorGenerator(low=0.0, high=1.0)
(size): ()
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.TensorTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates time series from tensor generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generators |
Mapping[str, BaseTensorGenerator | dict]
|
The tensor generators or their configurations. |
required |
Example usage:
>>> import torch
>>> from startorch.tensor import RandUniform
>>> from startorch.timeseries import TensorTimeSeriesGenerator
>>> generator = TensorTimeSeriesGenerator({"value": RandUniform(), "time": RandUniform()})
>>> generator
TensorTimeSeriesGenerator(
(value): RandUniformTensorGenerator(low=0.0, high=1.0)
(time): RandUniformTensorGenerator(low=0.0, high=1.0)
(size): ()
)
>>> generator.generate(seq_len=12, batch_size=4)
{'value': tensor([[...]]), 'time': tensor([[...]])}
startorch.timeseries.TransformTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator that generates a batch of time series, and then transforms them.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator |
BaseTimeSeriesGenerator | dict
|
The time series generator or its configuration. |
required |
transformer |
BaseTransformer | dict
|
The data transformer or its configuration. |
required |
Example usage:
>>> from startorch.timeseries import TransformTimeSeriesGenerator, SequenceTimeSeries
>>> from startorch.transformer import TensorTransformer
>>> from startorch.sequence import RandUniform
>>> from startorch.tensor.transformer import Abs
>>> generator = TransformTimeSeriesGenerator(
... generator=SequenceTimeSeries({"time": RandUniform(), "value": RandUniform()}),
... transformer=TensorTransformer(
... transformer=Abs(), input="value", output="value_transformed"
... ),
... )
>>> generator
TransformTimeSeriesGenerator(
(generator): SequenceTimeSeriesGenerator(
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)
(transformer): TensorTransformer(
(transformer): AbsTensorTransformer()
(input): value
(output): value_transformed
(exist_ok): False
)
)
>>> generator.generate(batch_size=4, seq_len=12)
{'time': tensor([[[...]]]), 'value': tensor([[[...]]]), 'value_transformed': tensor([[[...]]])}
startorch.timeseries.VanillaTimeSeriesGenerator ¶
Bases: BaseTimeSeriesGenerator
Implement a time series generator to "generate" the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
dict[Hashable, Tensor]
|
The time series data to generate. The dictionary cannot be empty. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
if |
TimeSeries usage:
>>> import torch
>>> from startorch.timeseries import VanillaTimeSeriesGenerator
>>> generator = VanillaTimeSeriesGenerator(
... data={"value": torch.ones(4, 10), "time": torch.arange(40).view(4, 10)}
... )
>>> generator
VanillaTimeSeriesGenerator(batch_size=4, seq_len=10)
>>> generator.generate(batch_size=3, seq_len=6)
{'value': tensor([[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.]]),
'time': tensor([[ 0, 1, 2, 3, 4, 5],
[10, 11, 12, 13, 14, 15],
[20, 21, 22, 23, 24, 25]])}
startorch.timeseries.is_timeseries_generator_config ¶
is_timeseries_generator_config(config: dict) -> bool
Indicate if the input configuration is a configuration for a
BaseTimeSeriesGenerator
.
This function only checks if the value of the key _target_
is valid. It does not check the other values. If _target_
indicates a function, the returned type hint is used to check
the class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
dict
|
The configuration to check. |
required |
Returns:
Type | Description |
---|---|
bool
|
|
Example usage:
>>> from startorch.timeseries import is_timeseries_generator_config
>>> is_timeseries_generator_config(
... {
... "_target_": "startorch.timeseries.SequenceTimeSeriesGenerator",
... "generators": {
... "value": {"_target_": "startorch.sequence.RandUniform"},
... "time": {"_target_": "startorch.sequence.RandUniform"},
... },
... }
... )
True
startorch.timeseries.setup_timeseries_generator ¶
setup_timeseries_generator(
generator: BaseTimeSeriesGenerator | dict,
) -> BaseTimeSeriesGenerator
Set up a time series generator.
The time series generator is instantiated from its configuration
by using the BaseTimeSeriesGenerator
factory function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator |
BaseTimeSeriesGenerator | dict
|
A time series generator or its configuration. |
required |
Returns:
Type | Description |
---|---|
BaseTimeSeriesGenerator
|
A time series generator. |
Example usage:
>>> from startorch.timeseries import setup_timeseries_generator
>>> setup_timeseries_generator(
... {
... "_target_": "startorch.timeseries.SequenceTimeSeriesGenerator",
... "generators": {
... "value": {"_target_": "startorch.sequence.RandUniform"},
... "time": {"_target_": "startorch.sequence.RandUniform"},
... },
... }
... )
SequenceTimeSeriesGenerator(
(value): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
(time): RandUniformSequenceGenerator(low=0.0, high=1.0, feature_size=(1,))
)