Skip to content

Breakfast

This page contains information about the Breakfast dataset, which was published with the following paper:

The Language of Actions: Recovering the Syntax and Semantics of Goal-
Directed Human Activities. Kuehne, Arslan, and Serre. CVPR 2014.

The data can be downloaded from the official project page.

Get the raw data

arctix provides the function arctix.dataset.breakfast.fetch_data to easily load the raw data in a polars.DataFrame format.

>>> from pathlib import Path
>>> from arctix.dataset.breakfast import fetch_data
>>> dataset_path = Path("/path/to/dataset/breakfast")
>>> data_raw = fetch_data(dataset_path, name="segmentation_coarse")  # doctest: +SKIP
shape: (3_585, 5)
┌──────────────┬────────────┬──────────┬────────┬──────────────────┐
│ action       ┆ start_time ┆ end_time ┆ person ┆ cooking_activity │
│ ---          ┆ ---        ┆ ---      ┆ ---    ┆ ---              │
│ str          ┆ f64        ┆ f64      ┆ str    ┆ str              │
╞══════════════╪════════════╪══════════╪════════╪══════════════════╡
│ SIL          ┆ 1.0        ┆ 30.0     ┆ P03    ┆ cereals          │
│ take_bowl    ┆ 31.0       ┆ 150.0    ┆ P03    ┆ cereals          │
│ pour_cereals ┆ 151.0      ┆ 428.0    ┆ P03    ┆ cereals          │
│ pour_milk    ┆ 429.0      ┆ 575.0    ┆ P03    ┆ cereals          │
│ stir_cereals ┆ 576.0      ┆ 705.0    ┆ P03    ┆ cereals          │
│ …            ┆ …          ┆ …        ┆ …      ┆ …                │
│ take_cup     ┆ 38.0       ┆ 92.0     ┆ P54    ┆ tea              │
│ pour_water   ┆ 93.0       ┆ 229.0    ┆ P54    ┆ tea              │
│ add_teabag   ┆ 230.0      ┆ 744.0    ┆ P54    ┆ tea              │
│ pour_sugar   ┆ 745.0      ┆ 884.0    ┆ P54    ┆ tea              │
│ SIL          ┆ 885.0      ┆ 973.0    ┆ P54    ┆ tea              │
└──────────────┴────────────┴──────────┴────────┴──────────────────┘

There are two versions of the dataset: "segmentation_coarse" and "segmentation_fine". If the data is not downloaded in the dataset path, fetch_data automatically downloads the data. You can set force_download=True to force to re-download the data if the data is already downloaded.

Prepare the data

arctix provides the function arctix.dataset.breakfast.prepare_data to preprocess the raw data. It returns two outputs: the prepared data and the generate metadata.

>>> from arctix.dataset.breakfast import prepare_data
>>> data, metadata = prepare_data(data_raw)  # doctest: +SKIP

data is a polars.DataFrame which contains the prepared data:

shape: (3_585, 8)
┌─────────────┬────────────┬──────────┬────────┬─────────────┬───────────┬───────────┬─────────────┐
│ action      ┆ start_time ┆ end_time ┆ person ┆ cooking_act ┆ action_id ┆ person_id ┆ cooking_act │
│ ---         ┆ ---        ┆ ---      ┆ ---    ┆ ivity       ┆ ---       ┆ ---       ┆ ivity_id    │
│ str         ┆ f64        ┆ f64      ┆ str    ┆ ---         ┆ i64       ┆ i64       ┆ ---         │
│             ┆            ┆          ┆        ┆ str         ┆           ┆           ┆ i64         │
╞═════════════╪════════════╪══════════╪════════╪═════════════╪═══════════╪═══════════╪═════════════╡
│ SIL         ┆ 1.0        ┆ 30.0     ┆ P03    ┆ cereals     ┆ 0         ┆ 50        ┆ 7           │
│ take_bowl   ┆ 31.0       ┆ 150.0    ┆ P03    ┆ cereals     ┆ 16        ┆ 50        ┆ 7           │
│ pour_cereal ┆ 151.0      ┆ 428.0    ┆ P03    ┆ cereals     ┆ 21        ┆ 50        ┆ 7           │
│ s           ┆            ┆          ┆        ┆             ┆           ┆           ┆             │
│ pour_milk   ┆ 429.0      ┆ 575.0    ┆ P03    ┆ cereals     ┆ 1         ┆ 50        ┆ 7           │
│ stir_cereal ┆ 576.0      ┆ 705.0    ┆ P03    ┆ cereals     ┆ 37        ┆ 50        ┆ 7           │
│ s           ┆            ┆          ┆        ┆             ┆           ┆           ┆             │
│ …           ┆ …          ┆ …        ┆ …      ┆ …           ┆ …         ┆ …         ┆ …           │
│ take_cup    ┆ 38.0       ┆ 92.0     ┆ P54    ┆ tea         ┆ 13        ┆ 12        ┆ 8           │
│ pour_water  ┆ 93.0       ┆ 229.0    ┆ P54    ┆ tea         ┆ 23        ┆ 12        ┆ 8           │
│ add_teabag  ┆ 230.0      ┆ 744.0    ┆ P54    ┆ tea         ┆ 25        ┆ 12        ┆ 8           │
│ pour_sugar  ┆ 745.0      ┆ 884.0    ┆ P54    ┆ tea         ┆ 43        ┆ 12        ┆ 8           │
│ SIL         ┆ 885.0      ┆ 973.0    ┆ P54    ┆ tea         ┆ 0         ┆ 12        ┆ 8           │
└─────────────┴────────────┴──────────┴────────┴─────────────┴───────────┴───────────┴─────────────┘

You can note that new columns are added and the data types of some columns have changed. metadata contains three vocabularies that are used to generate the new columns:

{'vocab_action': Vocabulary(
   counter=Counter({'SIL': 1012, 'pour_milk': 199, 'cut_fruit': 175, 'crack_egg': 154, 'put_fruit2bowl': 139, 'take_plate': 132, 'put_egg2plate': 97, 'add_saltnpepper': 83, 'stir_dough': 78, 'peel_fruit': 74, 'fry_egg': 73, 'stirfry_egg': 67, 'butter_pan': 64, 'take_cup': 59, 'squeeze_orange': 59, 'pour_juice': 57, 'take_bowl': 56, 'put_toppingOnTop': 55, 'pour_oil': 55, 'fry_pancake': 55, 'spoon_powder': 53, 'pour_cereals': 53, 'stir_milk': 51, 'pour_water': 51, 'cut_bun': 51, 'add_teabag': 51, 'smear_butter': 49, 'pour_dough2pan': 49, 'pour_coffee': 49, 'spoon_flour': 48, 'cut_orange': 46, 'put_pancake2plate': 41, 'take_glass': 37, 'stir_egg': 30, 'take_knife': 28, 'put_bunTogether': 25, 'pour_egg2pan': 24, 'stir_cereals': 20, 'take_topping': 16, 'take_squeezer': 12, 'stir_fruit': 11, 'stir_coffee': 10, 'spoon_sugar': 10, 'pour_sugar': 8, 'pour_flour': 7, 'take_eggs': 6, 'take_butter': 4, 'stir_tea': 2}),
   index_to_token=('SIL', 'pour_milk', 'cut_fruit', 'crack_egg', 'put_fruit2bowl', 'take_plate', 'put_egg2plate', 'add_saltnpepper', 'stir_dough', 'peel_fruit', 'fry_egg', 'stirfry_egg', 'butter_pan', 'take_cup', 'squeeze_orange', 'pour_juice', 'take_bowl', 'put_toppingOnTop', 'pour_oil', 'fry_pancake', 'spoon_powder', 'pour_cereals', 'stir_milk', 'pour_water', 'cut_bun', 'add_teabag', 'smear_butter', 'pour_dough2pan', 'pour_coffee', 'spoon_flour', 'cut_orange', 'put_pancake2plate', 'take_glass', 'stir_egg', 'take_knife', 'put_bunTogether', 'pour_egg2pan', 'stir_cereals', 'take_topping', 'take_squeezer', 'stir_fruit', 'stir_coffee', 'spoon_sugar', 'pour_sugar', 'pour_flour', 'take_eggs', 'take_butter', 'stir_tea'),
   token_to_index={'SIL': 0, 'pour_milk': 1, 'cut_fruit': 2, 'crack_egg': 3, 'put_fruit2bowl': 4, 'take_plate': 5, 'put_egg2plate': 6, 'add_saltnpepper': 7, 'stir_dough': 8, 'peel_fruit': 9, 'fry_egg': 10, 'stirfry_egg': 11, 'butter_pan': 12, 'take_cup': 13, 'squeeze_orange': 14, 'pour_juice': 15, 'take_bowl': 16, 'put_toppingOnTop': 17, 'pour_oil': 18, 'fry_pancake': 19, 'spoon_powder': 20, 'pour_cereals': 21, 'stir_milk': 22, 'pour_water': 23, 'cut_bun': 24, 'add_teabag': 25, 'smear_butter': 26, 'pour_dough2pan': 27, 'pour_coffee': 28, 'spoon_flour': 29, 'cut_orange': 30, 'put_pancake2plate': 31, 'take_glass': 32, 'stir_egg': 33, 'take_knife': 34, 'put_bunTogether': 35, 'pour_egg2pan': 36, 'stir_cereals': 37, 'take_topping': 38, 'take_squeezer': 39, 'stir_fruit': 40, 'stir_coffee': 41, 'spoon_sugar': 42, 'pour_sugar': 43, 'pour_flour': 44, 'take_eggs': 45, 'take_butter': 46, 'stir_tea': 47},
 ),
 'vocab_activity': Vocabulary(
   counter=Counter({'pancake': 557, 'salat': 549, 'scrambledegg': 448, 'friedegg': 389, 'sandwich': 325, 'juice': 324, 'milk': 278, 'cereals': 256, 'tea': 233, 'coffee': 226}),
   index_to_token=('pancake', 'salat', 'scrambledegg', 'friedegg', 'sandwich', 'juice', 'milk', 'cereals', 'tea', 'coffee'),
   token_to_index={'pancake': 0, 'salat': 1, 'scrambledegg': 2, 'friedegg': 3, 'sandwich': 4, 'juice': 5, 'milk': 6, 'cereals': 7, 'tea': 8, 'coffee': 9},
 ),
 'vocab_person': Vocabulary(
   counter=Counter({'P47': 84, 'P31': 83, 'P05': 83, 'P16': 82, 'P51': 81, 'P09': 81, 'P07': 80, 'P50': 77, 'P41': 76, 'P27': 76, 'P20': 76, 'P18': 76, 'P54': 75, 'P32': 75, 'P43': 74, 'P38': 73, 'P30': 73, 'P23': 73, 'P08': 73, 'P39': 72, 'P53': 71, 'P49': 71, 'P42': 70, 'P22': 70, 'P48': 69, 'P14': 69, 'P10': 69, 'P06': 69, 'P35': 68, 'P25': 68, 'P04': 68, 'P44': 67, 'P33': 67, 'P21': 67, 'P17': 67, 'P52': 66, 'P11': 66, 'P46': 65, 'P40': 65, 'P24': 65, 'P19': 65, 'P13': 64, 'P45': 63, 'P26': 62, 'P37': 61, 'P12': 61, 'P15': 60, 'P36': 59, 'P29': 59, 'P34': 56, 'P03': 50, 'P28': 25}),
   index_to_token=('P47', 'P31', 'P05', 'P16', 'P51', 'P09', 'P07', 'P50', 'P41', 'P27', 'P20', 'P18', 'P54', 'P32', 'P43', 'P38', 'P30', 'P23', 'P08', 'P39', 'P53', 'P49', 'P42', 'P22', 'P48', 'P14', 'P10', 'P06', 'P35', 'P25', 'P04', 'P44', 'P33', 'P21', 'P17', 'P52', 'P11', 'P46', 'P40', 'P24', 'P19', 'P13', 'P45', 'P26', 'P37', 'P12', 'P15', 'P36', 'P29', 'P34', 'P03', 'P28'),
   token_to_index={'P47': 0, 'P31': 1, 'P05': 2, 'P16': 3, 'P51': 4, 'P09': 5, 'P07': 6, 'P50': 7, 'P41': 8, 'P27': 9, 'P20': 10, 'P18': 11, 'P54': 12, 'P32': 13, 'P43': 14, 'P38': 15, 'P30': 16, 'P23': 17, 'P08': 18, 'P39': 19, 'P53': 20, 'P49': 21, 'P42': 22, 'P22': 23, 'P48': 24, 'P14': 25, 'P10': 26, 'P06': 27, 'P35': 28, 'P25': 29, 'P04': 30, 'P44': 31, 'P33': 32, 'P21': 33, 'P17': 34, 'P52': 35, 'P11': 36, 'P46': 37, 'P40': 38, 'P24': 39, 'P19': 40, 'P13': 41, 'P45': 42, 'P26': 43, 'P37': 44, 'P12': 45, 'P15': 46, 'P36': 47, 'P29': 48, 'P34': 49, 'P03': 50, 'P28': 51},
 )}

It is possible to specify the dataset split to filter the data and keep only the data related to a given dataset split. The dataset has different can be decomposed in different splits. For example, the following line will filter the data to keep only the rows related to the first training dataset (a.k.a. train1):

>>> data, metadata = prepare_data(data_raw, split="train1")  # doctest: +SKIP
shape: (2_692, 8)
┌─────────────┬────────────┬──────────┬────────┬─────────────┬───────────┬───────────┬─────────────┐
│ action      ┆ start_time ┆ end_time ┆ person ┆ cooking_act ┆ action_id ┆ person_id ┆ cooking_act │
│ ---         ┆ ---        ┆ ---      ┆ ---    ┆ ivity       ┆ ---       ┆ ---       ┆ ivity_id    │
│ str         ┆ f64        ┆ f64      ┆ str    ┆ ---         ┆ i64       ┆ i64       ┆ ---         │
│             ┆            ┆          ┆        ┆ str         ┆           ┆           ┆ i64         │
╞═════════════╪════════════╪══════════╪════════╪═════════════╪═══════════╪═══════════╪═════════════╡
│ SIL         ┆ 1.0        ┆ 9.0      ┆ P16    ┆ cereals     ┆ 0         ┆ 3         ┆ 7           │
│ pour_cereal ┆ 10.0       ┆ 269.0    ┆ P16    ┆ cereals     ┆ 21        ┆ 3         ┆ 7           │
│ s           ┆            ┆          ┆        ┆             ┆           ┆           ┆             │
│ pour_milk   ┆ 270.0      ┆ 474.0    ┆ P16    ┆ cereals     ┆ 1         ┆ 3         ┆ 7           │
│ SIL         ┆ 475.0      ┆ 548.0    ┆ P16    ┆ cereals     ┆ 0         ┆ 3         ┆ 7           │
│ SIL         ┆ 1.0        ┆ 39.0     ┆ P17    ┆ cereals     ┆ 0         ┆ 34        ┆ 7           │
│ …           ┆ …          ┆ …        ┆ …      ┆ …           ┆ …         ┆ …         ┆ …           │
│ take_cup    ┆ 38.0       ┆ 92.0     ┆ P54    ┆ tea         ┆ 13        ┆ 12        ┆ 8           │
│ pour_water  ┆ 93.0       ┆ 229.0    ┆ P54    ┆ tea         ┆ 23        ┆ 12        ┆ 8           │
│ add_teabag  ┆ 230.0      ┆ 744.0    ┆ P54    ┆ tea         ┆ 25        ┆ 12        ┆ 8           │
│ pour_sugar  ┆ 745.0      ┆ 884.0    ┆ P54    ┆ tea         ┆ 43        ┆ 12        ┆ 8           │
│ SIL         ┆ 885.0      ┆ 973.0    ┆ P54    ┆ tea         ┆ 0         ┆ 12        ┆ 8           │
└─────────────┴────────────┴──────────┴────────┴─────────────┴───────────┴───────────┴─────────────┘

arctix provides the function arctix.dataset.breakfast.to_array to convert the polars.DataFrame to a dictionary of numpy arrays.

>>> from arctix.dataset.breakfast import prepare_data
>>> arrays = to_array(data)  # doctest: +SKIP

The dictionary contains some regular arrays and masked arrays because sequences have variable lengths:

{'sequence_length': array([11, 19, 10,  ...,  5,  6,  4]),
 'person_id': array([ 0,  0,  0,  ..., 51, 51, 51]),
 'cooking_activity_id': array([0, 1, 2, ..., 4, 5, 7]),
 'action_id': masked_array(
   data=[[0, 3, 29, ..., --, --, --],
         [0, 5, 16, ..., --, --, --],
         [0, 3, 7, ..., --, --, --],
         ...,
         [0, 24, 26, ..., --, --, --],
         [0, 32, 30, ..., --, --, --],
         [0, 21, 1, ..., --, --, --]],
   mask=[[False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         ...,
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True]],
   fill_value=999999),
 'start_time': masked_array(
   data=[[1.0, 2.0, 441.0, ..., --, --, --],
         [1.0, 112.0, 227.0, ..., --, --, --],
         [1.0, 5.0, 397.0, ..., --, --, --],
         ...,
         [1.0, 385.0, 650.0, ..., --, --, --],
         [1.0, 31.0, 141.0, ..., --, --, --],
         [1.0, 45.0, 213.0, ..., --, --, --]],
   mask=[[False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         ...,
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True]],
   fill_value=1e+20),
 'end_time': masked_array(
   data=[[1.0, 440.0, 951.0, ..., --, --, --],
         [111.0, 226.0, 281.0, ..., --, --, --],
         [4.0, 396.0, 587.0, ..., --, --, --],
         ...,
         [384.0, 649.0, 1899.0, ..., --, --, --],
         [30.0, 140.0, 530.0, ..., --, --, --],
         [44.0, 212.0, 344.0, ..., --, --, --]],
   mask=[[False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         ...,
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True],
         [False, False, False, ...,  True,  True,  True]],
   fill_value=1e+20)}