Output
analora.output ¶
Contain outputs.
analora.output.BaseLazyOutput ¶
analora.output.BaseOutput ¶
Bases: ABC
Define the base class to implement an output.
Example usage:
>>> from analora.output import Output
>>> from analora.content import ContentGenerator
>>> from analora.evaluator import Evaluator
>>> output = Output(content=ContentGenerator("meow"), evaluator=Evaluator())
>>> output
Output(
(content): ContentGenerator()
(evaluator): Evaluator(count=0)
)
>>> output.get_content_generator()
ContentGenerator()
>>> output.get_evaluator()
Evaluator(count=0)
analora.output.BaseOutput.compute
abstractmethod
¶
compute() -> BaseOutput
Compute the results and return a new ouptut.
Returns:
Type | Description |
---|---|
BaseOutput
|
A new ouptut with the computed results. |
Example usage:
>>> from analora.output import Output
>>> from analora.content import ContentGenerator
>>> from analora.evaluator import Evaluator
>>> output = Output(
... content=ContentGenerator("meow"), evaluator=Evaluator({"accuracy": 0.42})
... )
>>> out = output.compute()
>>> out
Output(
(content): ContentGenerator()
(evaluator): Evaluator(count=1)
)
analora.output.BaseOutput.equal
abstractmethod
¶
equal(other: Any, equal_nan: bool = False) -> bool
Indicate if two outputs are equal or not.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Any
|
The other output to compare. |
required |
equal_nan
|
bool
|
Whether to compare NaN's as equal. If |
False
|
Returns:
Type | Description |
---|---|
bool
|
|
Example usage:
>>> from analora.output import Output
>>> from analora.content import ContentGenerator
>>> from analora.evaluator import Evaluator
>>> output1 = Output(content=ContentGenerator("meow"), evaluator=Evaluator())
>>> output2 = Output(content=ContentGenerator("meow"), evaluator=Evaluator())
>>> output3 = Output(
... content=ContentGenerator("hello"), evaluator=Evaluator({"accuracy": 0.42})
... )
>>> output1.equal(output2)
True
>>> output1.equal(output3)
False
analora.output.BaseOutput.get_content_generator
abstractmethod
¶
get_content_generator(
lazy: bool = True,
) -> BaseContentGenerator
Get the HTML content generator associated to the output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lazy
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
BaseContentGenerator
|
The HTML content generator. |
Example usage:
>>> from analora.output import Output
>>> from analora.content import ContentGenerator
>>> from analora.evaluator import Evaluator
>>> output = Output(content=ContentGenerator("meow"), evaluator=Evaluator())
>>> output.get_content_generator()
ContentGenerator()
analora.output.BaseOutput.get_evaluator
abstractmethod
¶
get_evaluator(lazy: bool = True) -> BaseEvaluator
Get the evaluator associated to the output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lazy
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
BaseEvaluator
|
The evaluator. |
Example usage:
```pycon
from analora.output import Output from analora.content import ContentGenerator from analora.evaluator import Evaluator output = Output(content=ContentGenerator("meow"), evaluator=Evaluator()) output.get_evaluator() Evaluator(count=0)
analora.output.EmptyOutput ¶
Bases: Output
Implement the accuracy output.
Example usage:
>>> from analora.output import EmptyOutput
>>> output = EmptyOutput()
>>> output
EmptyOutput()
>>> output.get_content_generator()
ContentGenerator()
>>> output.get_evaluator()
Evaluator(count=0)
analora.output.Output ¶
Bases: BaseLazyOutput
Implement a simple output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
content
|
BaseContentGenerator
|
The HTML content generator. |
required |
evaluator
|
BaseEvaluator
|
The evaluator. |
required |
Example usage:
>>> from analora.output import Output
>>> from analora.content import ContentGenerator
>>> from analora.evaluator import Evaluator
>>> output = Output(content=ContentGenerator("meow"), evaluator=Evaluator())
>>> output
Output(
(content): ContentGenerator()
(evaluator): Evaluator(count=0)
)
>>> output.get_content_generator()
ContentGenerator()
>>> output.get_evaluator()
Evaluator(count=0)